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Introduction

The program PottersWheel has been developed to provide an intuitive and yet powerful framework 

for data-based modeling of dynamical systems like biochemical reaction networks. Its key functional-

ity is multi-experiment fitting, where several experimental data sets from different laboratory condi-

tions are fitted simultaneously in order to improve the estimation of unknown model parameters, to 

check the validity of a given model, and to discriminate competing model hypotheses. New experi-

ments can be designed interactively. Models are either created text based or using a visual model 

designer. Dynamically generated and compiled C files provide fast simulation and fitting procedures. 

Each function can either be accessed using a graphical user interface or via command line, allowing 

for batch processing within custom Matlab scripts. PottersWheel is designed as a Matlab toolbox, 

comprises 250.000 lines of Matlab and C code. The PottersWheel software requires Matlab 2006a 

or higher on any Linux, Mac, or Windows PC. The Matlab optimization toolbox and a few external 

programs are recommended, depending on the intended use of PottersWheel. A detailed installation 

description and introductory videos are given at www.potterswheel.de where the software can freely 

be downloaded for academic usage.

Introduction1. 

Modeling aims to formulate a set of mathematical equations which are able to predict computa-

tionally the dynamic behavior of a real system, e.g. of a biochemical network. Entities of the system 

should preferably have a representation within the model in contrast to black-box modeling. This 

approach deepens the understanding about the network during the process of hypothesis genera-

tion, mathematical formulation, and comparison with experimental data potentially leading to new 

hypotheses. At the same time, laboratory measurements too complex to be understood by visual 

inspection are brought into relation. Beyond that, a formalized model is helpful to unambiguously 

communicate a hypothesis to colleagues. Finally, a suitable model renders possible new approaches 

to identify therapeutic strategies and to assess the feasibility of a research agenda minimizing the 

cost in terms of animals, time, and money.

Modeling approaches differ in the choice of possible model structures. Regression models use alge-

braic equations (1), Boolean models comprise logical gates (2), Bayesian networks (3) and stochastic 

models  (4,5) are based on probability distributions  and mechanistic models are expressed using 

either ordinary differential equations (ODEs) if spatial effects are neglected (6) or partial differential 

equations (PDEs) in the more general case (7). Each approach implies assumptions about the sys-

tem at hand, requires a certain type of measurements, and permits conclusions at different levels 

of detail and accuracy. Moreover, the burden of computational implementation and analysis varies 

strongly between the modeling concepts.

Here, we focus on mechanistic modeling of biochemical networks using ODEs and the PottersWheel 

modeling framework (8). This approach assumes a sufficiently large number of molecules not be-

low 1000 and no spatial effects, requires time-resolved measurements, allows predicting transient 
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system responses to changed environmental conditions, and often simplifies interpretation due to 

a one-to-one relationship to physiological entities. The numerical effort lies between regression/

Boolean models and stochastic/PDE models and can usually be handled by a single PC or a small 

computer cluster, given that suitable algorithms are applied.

In the following we introduce key concepts and the PottersWheel terminology based on the JAK/

STAT signal transduction pathway as an example for a biochemical reaction network (9).

Reactions, variables, and parameters1.1 

In the simple irreversible reaction „A to B“ assuming mass action kinetics, the reaction rate  is pro-

portional to the time-dependent concentration of species A, denoted as [A](t), often abbreviated as 

A(t),  neglecting the square brackets, or just A. The proportionality is expressed using a rate coeffi-

cient , leading to the following ordinary differential equation (ODE) for the flux of the reaction:

     or just    . 

 

The time-dependent concentration for A is thus simply an exponential decay starting from an initial 

concentration at t=0:

 

In a more complex situation, the above analytical solution is not feasible. Instead, numerical integra-

tion is used to determine the concentration-time profiles. Several kinetic laws apart from mass ac-

tion can be used, e.g. Michaelis-Menten and Hill kinetics (10).
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Goodness-of-fit

Calculating the goodness-of-fit. After each fit or parameter change, PottersWheel displays 1. 

several statistical measures on the Matlab command line characterizing the fitting quality 

(see Table 2). We recommend applying a so-called Chi-Square test using a significance level 

of e.g. 0.05. PottersWheel determines two p-values, pValueN and pValueN-p. If the larger 

pValueN is already below 0.05 the model can be rejected or the error bars of the data points 

have been underestimated and should be larger. If the pValueN is above 0.05, but the smaller 

pValueN-p is below 0.05, a decision whether to reject the model is difficult. If both p-values 

are above the threshold, the model has not to be rejected. Further measures are the Akaike 

(14) and Bayesian information criterion (15) AIC, AICc, and BIC to compare competing models. 

Their proper statistical interpretation is beyond this introductory manuscript.

Improving the fit-quality. To achieve a better fit,  try one or more of the following:2. 

Improve the fitting accuracy by reducing the tolerance for changes in the Chi-Square a. 

value and in the parameters to 1e-8 and increasing the maximum number of iterations 

(config.optimization.trustregion.TolFun / TolX / maxIter).

Switch between the RADAU5 and CVODES integrators (b. config.integration.inte-

grator).

Use the Matlab symbolic math toolbox to enable PottersWheel to determine analytical c. 

derivatives for integration and optimization (config.integration.useJacobian 

and config.optimization.useJacobian).

Use the sliders of the equalizer to manually find a better initial guess for the param-d. 

eters.

Fit with simulated annealing (asamin (16,17)), scatter search (SSM (18)), or a boosted fit, e. 

selectable in the fitting view of the equalizer (EQ	|	View	|	Fitting).

Use trust-region in logarithmic parameter space within a fit-sequence from equally sam-f. 

pled initial guesses throughout the parameter space      

(config.optimization.useQRNG).

Pair-wise linear identifiability analysis. Based on a valid fit, the so-called “identifiability” of 3. 

the calibrated parameters should be investigated. In many cases the amount of measured 

data is not sufficient to unambiguously determine parameter values, i.e. a forced change 

to one parameter may be compensated perfectly by other parameters leading to the same 

goodness-of-fit. Using “EQ	|	View	|	Fit	sequence	analysis”, a linear identifiability analysis is 

applied using the fit-sequence F2 with n > 100 fits, preferably > 300 fits. 
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Model refinement

Figure	10.	Fit	sequence	analysis	and	chi-square	landscape.	Left: A fit sequence analysis provides an overview 
of suitable model fits and detects pairs of parameters which can compensate each other’s effect, i.e. are not 
identifiable when fitted at the same time. Right: The chi-square landscape visualizes the goodness-of-fit for 
two parameters. Identifiable parameters lead to an unambiguous minimum (left) in contrast to dependent 
parameters (right).

Multivariate	non-linear	identifiability	analysis.	4. The MOTA algorithm can be used to identify 

groups of non-linearly related parameters after a fit sequence has been applied (19). The PLE 

method provides a means to distinguish between practical and structural non-identifiabilities 

(20). In the former case, a better quality of measurements may resolve the identifiability 

problem. For the structural case, the model should be re-parameterized or additional species 

should be measured, preferably under new experimental conditions. PLE is available under 

“EQ	|	View	|	Single	Fit	Analysis”. 

Model refinement7. 

If the model structure is not able to explain the experimental measurements, create a set of physi-

ologically reasonable alternative models. In order to avoid redundant model paragraphs and copy-

and-paste errors, this could be done using a common core-model which is the same for all variants. 

Then, „daughter“-models are created (see pwGetEmptyModel). Each model variant should be fit-

ted to the data, preferably using batch processing strategies based on PottersWheel macros (see 3.8). 

As a starting point to envision suitable model variants, use the PottersWheel equalizer to understand 

the dynamic behavior of the original system (see 3.6).
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Analysis and model prediction8. 

Figure	11.	Detailed	sensitivity	analysis. PottersWheel calculates several characteristics of the trajectory of 
a species, e.g. time and value of its maximum. The shown example displays the time-profile of the activated 
JAK/STAT receptor pR. The inlet depicts the dependency of a characteristic value on a changed initial concen-
tration or parameter value, i.e. the sensitivity, in words „What is the relative increase of a trajectory property 
when a parameter is increased?“. A sensitivity of 1 corresponds (in a linear approximation) to a doubled 
trajectory property for a doubled parameter value. R0 denotes the initial value of the free receptor, intR, de-
actR, actR are rate constants for the internalization, deactivation, and activation, i.e. phosphorylation of the 
receptor. The time of peak (yellow) is not affected when R0 is increased. However, increasing any of the rate 
constants leads to an earlier peak. The signal duration (red) is here defined as the time when the trajectory 
falls below a 20% threshold compared to the maximum. It will be smaller for increase intR and actR, but will 
be larger for increased deactR. This was expected, since a slower deactivation will lead to a more sustained 
signal.

A mathematical model can be used for example to display the concentration time-profile of unob-

served species, to determine sensitive parameters which could serve as a target within a clinical set-

ting, and to calculate further model characteristics like the half-life of a species. A common analysis 

could be:

1. Open	the	PottersWheel	equalizer. Combine one or more model-data-couples into the lower 

list of the main user interface. Then open the equalizer using “PW	|	Assembly	|	Open	equal-

izer”. The PottersWheel equalizer is the key user interface for interactive model analysis. 

Changing	parameter	values.2.  Each parameter can be changed using a pair of sliders. The right 

slider changes the order of magnitude and the left slider can be used for fine-tuning – it 

changes the mantissa. Alternatively the parameter value can be entered directly using the 
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text field. The original values of the parameters are available via the reset parameter button 

(see pwReset).

Displaying	A,	U,	X,	Y,	Z	variables.3.  PottersWheel allows for plotting different classes of vari-

ables at the same time, which are algebraic variables A, driving inputs U, dynamic variables X, 

observables Y, and derived variables Z (see 3.1). Use the corresponding toggle buttons.

Grouped	and	hidden	variables.	4. Using “EQ	|	View	|	Plotting”, several variables can be grouped 

and will be shown within the same subplot, offering direct comparison of trajectories. Unin-

teresting variables can be hidden. The manual plot settings can be saved to hard disk or into 

the original model file for later use.

Phase	space	analysis.	5. Using “EQ	|	View	|	Phase	space”, the concentration profile of two 

variables can be plotted against each other in a phase space diagram. For related variables, 

a potentially complex dynamic behavior can often be seen in a simpler form, e.g. a circle or 

a line.

Figure	handling.6.  The figure menu provides several functions to arrange or copy figures and 

subplots. Especially when working with many trajectories, it can be useful to copy a single 

subplot into a separate figure. Use the figure saving button to store the current figures into 

various formats which can be specified in the configuration, e.g. “config.plotting.saveJPG”. 

Alternatively, activate the figure toolbar and menu for individual saving (config.plotting.tool-

Bar / menuBar).

Sensitivity	analysis.7.  Using “PW	|	Models	|	Sensitivity	Analysis” in the main user interface, 

several sensitivity analyses are available to determine how strong a variable or a characteris-

tic value like the time of the maximum depend on a parameter or an initial value (see Figure 

10).

Residual	analysis.8.  Using “EQ	|	View	|	Single	Fit	Analysis” in the equalizer, the distribution of 

residuals can e.g. be compared to a Gaussian distribution. A suitable model should not suffer 

from systematic errors.

Chi-Square	landscape.9.  Again using “EQ	|	View	|	Single	Fit	Analysis”, the Chi-Square can be 

calculated systematically in 2 or 3 dimensions of the parameter space around the current 

position. This is a useful visualization of non-identifiability manifolds.
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Design of new experiments9. 

An experimental setting corresponds to specific characteristics of the driving input functions and 

initial concentrations. In the JAK/STAT system the concentration of EPO is controlled experimentally. 

The driving input designer allows investigating the effect of a continuous, ramp, or pulse stimulation 

as shown in Figure 12 in combination with varying initial concentrations using the equalizer (EQ	|	

View	|	Driving	input	designer). In order to discriminate competing model hypotheses, the next ex-

periment should have as different observable time-profiles as possible which can be verified compu-

tationally.

Figure	12.	Stimulations	and	the	PottersWheel	input	designer. Left: Depending on the used cell-system con-
tinuous, pulsed and ramp ligand concentrations, here of an enzyme E, may be feasible. In order to obtain dif-
ferent responses by the system, it is important to apply qualitatively different driving inputs, i.e. stimulations. 
Right: The driving input designer allows to test the model under different experimental conditions, e.g. the 
impact of an oscillatory stimulation.
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Model exploration in the visual model designer10. 

As displayed in Figure 5, reaction based dynamical models can be created and modified either di-

rectly in the model definition file or using the visual model designer. The latter also allows exploring 

the dynamic properties of the modeled system by hovering the mouse over a species or a reaction 

anchor. The corresponding trajectories or reaction fluxes are displayed in a subfigure as shown in 

Figure 13.

Figure	13.	Trajectory	visualization	in	PottersWheel	model	designer. The inlet displays the trajectory of spe-
cies B when the mouse hovers of the corresponding object in the model layout. The flux of a reaction can be 
displayed by moving the mouse on top of a reaction anchor.

Rule based modeling and naming convention11. 

Suppose an enzyme E in n different states E1, ..., En which triggers the reaction „A to B“, independent 

of the current state of E itself, leading to n similar reactions. If protein A possesses m different states, 

the number of reactions explodes to , which is called combinatorial complexity (21,22). The corre-

sponding model definition file would be difficult to maintain and is prone to copy-and-paste errors. 

Therefore, PottersWheel supports rule based modeling, where reactions may contain placeholders 

that are replaced automatically by all matching species. This approach requires that variable IDs fol-

low the recommended PottersWheel naming convention:

Basic, i.e. unmodified and unbound species start with a capital letter, e.g. „1. Erk“.

Modifications are lowercase prefixes, e.g. “2. ppErk”.

Complexes-bounds are denoted by an underscore “3. _”.
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The order of species in a complex is always the same, i.e. “4. ppMek_Erk” is not equivalent to 

“Erk_ppMek”.

For further information see pwAddR and pwTutorial _ Rule _ based _ modeling.

Implicit and explicit multi-compartment modeling12. 

Biochemical processes often benefit from compartmentalization, e.g. in order to increase locally 

the pH-value required to degrade waste products. Therefore, many biochemical models comprise 

compartmental information, essentially the volume of each compartment and the classification of 

each species to exactly one compartment. As discussed in the SBML specifications (see www.sbml.

org), the kinetic rate of a reaction with reactants and products in different compartments, has to be 

expressed in amount-based units per time instead of concentration changes per time. This is due to 

the fact, that the loss of a single molecule from a small into a 100 times larger compartment results 

in a 100 times stronger concentration change in the smaller compartment. The additional burden 

to determine the amount of a kinetic rate is usually handled by multiplication with the size of the 

corresponding volume. Note that in reversible reactions from compartment C1 to C2, in most cases 

the part of the kinetic rate comprising reactants is multiplied with c1, the size of C1, and the part 

comprising the products is multiplied with c2, e.g. 

k1*r1*c1 – k2*p1*c2

The question arises whether the modeling framework can take care of the compartment size multi-

plication automatically, so that the user avoids specifying redundant or repetitive information, as in 

a set of reactions all taking place in the same compartment. At the same time, the readability of the 

kinetic law would be improved and correspond closer to the expression in a biochemistry textbook. 

In fact, PottersWheel is able to correct for the compartment sizes automatically for most models 

which is called implicit multi-compartment modeling. In the other cases, when importing an amount 

based model, or to have full control, the compartment correction can be turned off by the following 

line in the model definition file:

m.amountBasedRates = true; 

Since SBML models are amount-based, an imported SBML model will comprise the above line below 

the meta information paragraph corresponding to explicit multi-compartment modeling.
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Configuration13. 

To allow for a detailed individual configuration of PottersWheel and the applied algorithms, hun-

dreds of settings can be adjusted either within the configuration dialog or directly from command 

line. Elements in the configuration dialog share the same name as required for command line usage, 

which enables the user to quickly becoming an experienced command line user and thereby accel-

erating creation of custom Matlab script, e.g. for batch processing. Changes to entries are affecting 

PottersWheel instantaneously. Closing of the dialog is not necessary, but consequently canceling is 

not possible either. Use the file saving and opening menu to store preferred settings for use. Within 

own programs or in the command line, all configuration settings are accessible, e.g.: 

>> config = pwGetConfig;  

>> config.integration.useJacobian = true; 

>> pwSetConfig(config); 

This is especially useful if you are working with PottersWheel macros, since all settings, modeling, 

fitting, and analysis commands are documented in the same file.

Macros and custom Matlab programs14. 

Since PottersWheel is created as a Matlab toolbox, the user is not restricted to graphical user inter-

faces and by creating own Matlab programs employing the PottersWheel function library (API – ap-

plication programming interface) he or she may gain and improve his or her competence in a major 

and widespread numerical framework.  As exemplified for the model designer and the model editor 

in Figure 5, PottersWheel allows for applying mathematical modeling using a visual or text based 

approach, targeting the beginning as well as the advanced user. All PottersWheel functions are avail-

able as Matlab functions named as “pw…”. A macro, i.e. a script based on the PottersWheel library to 

fit a model to a dataset could be written as follows:

pwAddModel(‘Model1.m’); 

pwAddData(‘Experiment1.xls’); 

pwCombine; 

pwArrange; 

pwFit;

When saving these lines into a file named „myFittingScript.m“, each command will be executed se-

quentially after typing in the Matlab command window

>> myFittingScript 

Using macros is not only useful to apply batch-processing but also ensures that each modeling step 

is documented and can be reproduced at any later time.
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Reporting15. 

Each analysis or visualization step can be added as a section to a report. The Report Designer user 

interface allows removing and reordering of sections, as well as displaying only those figures which 

are related to the section. Finally, a report can be created either as a Latex-based PDF, a Microsoft 

Word document, or as an HTML file. Several predefined reports can be created in the report menu 

(PW	|	Report) , e.g. to summarize the model structure.

Model stiffness16. 

The trajectories, i.e. the time-profile of differential equation based models are approximated compu-

tationally using numerical integration. The accuracy of the integration depends on the stiffness of the 

system at hand: the stiffer the ODE system, the more difficult and time-consuming the integration 

(12). Most biochemical networks are stiff, which is based on very fast and slow processes happening 

at the same time. Specialized integrators have been developed for this situation. PottersWheel sup-

ports several of them: ode15s, ode23s, RADAU, RADAU5, and CVODES. In our experience, ode15s is 

the slowest but also most robust integrator. It is used automatically if the current integrator fails.

A model may be integrable for the current set of parameter values and also for the optimal set of 

parameters, but during optimization the model may become extremely stiff, because a certain re-

gion of parameter values may be entered. Consequently the integration fails. As a remedy, the limits 

of parameter optimization could be narrowed to avoid the stiff region. In addition, a deterministic 

optimizer like trust-region can be used instead of a more „jumping“ stochastic optimizer like asamin 

(16,17). Finally, re-formulation of the mathematical model may be useful in order to avoid too many 

extremely fast reactions.
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